P.I. Robert Wilson

Laboratory for Atmospheric and Space Physics, University of Colorado Boulder,
Boulder, Colorado, USA

Email: Rob.Wilson@lasp.colorado.edu

(Sorry this is rushed and less polished than I'd like, but realized the deadline was this
afternoon so I got typing before it was too late...)

In response to topic #1 (‘What tools, resources, workflows,
tutorials, and interfaces will future users expect or require?’)

[have used PDS data a lot in the past, and also peer reviewed some PDS datasets.

The biggest issue to address for me is the ability to read PDS compliant files in to
different programing languages easily, to be able to retrieve the files automatically
and to confirm that the files are described properly.

While having generic code provided by the PDS to read in any and all PDS data in all
common languages (c, Fortran, Python, IDL, Matlab, Mathematica, etc.) on all
platforms (PC, Mac, Linux, Solaris, etc.) is near impossible, there should be an easy
way to validate your downloaded PDS file. While there is a checksum included in
the PDS label files that can be used, that doesn’t confirm that the file is obeying the
format specified in its own label (or format) file.

The label files contain the number of bytes per record, and what type of data is
expected. However in my PDS experience, not all files were as expected (admittedly
the vast majority were perfect, but the very few unexpected ones lead to unexpected
results, some of which took me hours to identify). When a VALID_MINIMUM and
VALID_MAXIMUM were provided, I found instances where the values were outside
that range. In text files I've found random characters on odd lines (like an ‘a’
character when a record should only be numbers, or even a random singular
opening parentheses). I've also found instances where a column should be a 2 digit
number, but it’s 8 digits instead, making the line length different, or the letters NaN
or such instead of a number. To easily ready in text data, most codes (Matlab/IDL)
expect each line to be the exact same format or length of characters.

There should be an easy way to validate the file obeys the rules from their own label
files. Confirming all numbers are between the VALID_MIN and VALID_MAX (or
MISSING_CONSTANT) should be an easy check for both binary and text PDS files.

For PDS text files it should be easy to confirm all lines are the same character length
and have expected values (numbers or letters, and the correct number of them,

without any erroneous characters, correct number of columns per line, etc.) and
nothing else.

While label files do often include a MD5 checksum of the data file, that only tells you
if it downloaded correctly and not if the file contents themselves are correct.
Similarly, for PDS peer review purposes, reviewers often spot-check data, thus can
easily miss the few bad lines in a year’s worth of data that would otherwise trip up
automatic reading codes and cost you hours in debugging.

For text files this could be simply achieved with a standard one-line (likely one very
long line) of regular expression that could be used to validate the files. Regular
Expression is a bit of an art form, there’s a billion ways to describe everything - and
often it’s clear to the creator as they compose it but is hard for others to read, but it
should not be difficult to make one regular expression phrase that checks for correct
character length and type. Once tested and included within the label file, no one
needs to read the regular expression to understand it - they just can trust it works
and copy/paste it to then apply it.

When I peer reviewed the Cassini Magnetometer data I did this, and knocked up this
regular expression line to look at the 1-second resolution data:
/"\d{4}-(0[1-9]|1[012])-(0[1-9]|[12]\d|3[01])T([01]\d|2[0123]):[0-5]\d:([O-
SI\d|60)\A\A{1}(\s((\d{SHI(T\-\sI\d{4})[(\s[\-\s]\d{3})|(\s{2}[\-
\sI\d{2})|(\s{3}[\-
\SN\A{TH\A\A{3}{3}(\s((\d{4})[(\s\d{3})[(\s{ZN\d{2D|(\s{3\d{TH)\\d{3}){1}\s
(\A\d)|(\s\d)\r?\n?$/

This was far better than spot checking data as I could run it on every single record in
the volume, but is not fully comprehensive - it could be better. e.g. while the above
started by checking for a UTC data string of the form yyyy-mm-ddTHH:MM:SS
where mm could only be 01-12, dd as 01-31, it would still allow bad dates such as
Feb 31st. It forces hours to be 00-23 only, minutes to be 0-59 only and seconds to be
0-60 (to allow for a leap second), but again did not check that if the whole second
was 60 that it occurred at 23:59:60 at the end of June or December only (when leap
seconds can occur), and doesn’t allow for the possibility of adding 2 leap seconds in
one go - allowed but as yet never occurred (23:59:61).

While checking a UTC sting sounds complex, someone only needs to create a regular
expression check for it once for both yyyy-mm-dd and yyyy-ddd formats, and that
same regular expression string can be used for all files.

Likewise the last column is described as ((\d\d)|(\s\d)), which lets either a 2 digits
number or a single digit number pre-pended with a space through, which would
have caught a recent error I found and reported (and was fixed in PDS quickly)
where a 2-character number had the value “-2147483648” by mistake in the file.

[admit this regular expression approach looks horrendous - but it’s really not - and
would give end users an instant way to confirm the PDS data files (when text) are in
the expected format.

Wish #1 for Future of PDS: Regular Expression

My first wish for the future of PDS text files would to include a regular expression
phrase of a valid record within the label file to allow file contents to be
automatically verified by anyone.

The PDS could do this as a matter of course when they receive new files to the
volume, but it is also good to give the end user the ability to check the file syntax.

Wish #2 for Future of PDS: Check data against valid ranges

My second wish is that binary files have an easy way (perhaps in c or python, or
another free language that anyone can download with no pay-wall) to confirm that a
whole number of records exist and each objects entry is within the valid min/max
range as specified by the label file.

Wish #3 for Future of PDS: Have a way to pull down files automatically

My third wish is that by knowing PDS volume name and file name one could create a
web request (via HTTPS) to retrieve that file locally. As such end users codes could
be written to automatically get data when it needs it, as it needs it, rather than
relying on the user to download data themselves prior to anlaysis.

Wish #4 for Future of PDS : The perfect file format for all... (impossible)
One file format for all possible data... but practical impossible, as cited by XKCD and
https://xkcd.com/927/. However some thoughts follow on the remaining pages.

The hunt for a perfect data format — thoughts for consideration

My fourth wish is to have the perfect PDS file suitable for all data... sadly that is as
likely a team of unicorns winning the Superb Owl (spelling deliberate), there is no
one perfect file format for the PDS as people’s data are too different.

While I would love there to be just one file type - the best I can do is to explain what
[think is less ideal in the current types of file on the PDS.

Text files are easy to read as a human, and will be over the decades - a great plus for
archiving standards, however there are downsides. The first is that they can be
huge in file size, and are not well suited to multidimensional data. They do not email
well either; personally I've hit issues where someone emails me a PDS file they’ve
been working on and the email programs used alter the line endings, affecting
record lengths. We’ve moved to gzipping PDS text files before emailing them to each
other to preserve line endings.

Comma separated variable (CSV) text files seem ideal (especially when they don’t
have to be fixed length records) and are read my many programs, however they are
very ‘English’. The French, Italians and the main international auxiliary languages
(such as Esperanto) use commas for a decimal point, resulting in CSV files becoming
very confusing. A tab delimited file would be better as a world wide language
standard. Does the PDS have a specific language? Must all files be submitted in
English? For that matter and aiming at a US audience, would Spanish language files
also be allowed?

Although going out of fashion, I like PDS3 binary files. The perceived downside is
they require some coding in order to read the files, however the label files clearly
state byte type (integer, float, etc.), size, etc. have no issues with line endings so can
be emailed cleanly, but again have issues with large dimensional data (e.g. 3D+).
These are clearly labeled, and any computer programmer should have zero trouble
decoding them - although many scientists seem to have an illogical fear of this, it
really is very straightforward. I think the PDS got this right for long term archiving -
does the job perfectly - but the PDS could use more examples of how to deal with 3D
or even 4D and above data in this format.

CDF files seem to be the new vogue, however I believe them to be currently
unsuitable for PDS. They require 34 party software to read (from Goddard, the built
in CDF routines in IDL and Matlab are too old and not compatible with current CDF
versions), which also gets updated every so often. Does Goddard have a
requirement to keep CDF reading software available for as long as PDS files are
expected to be around? For instance the Goddard Space Physics Data Facility have
already stopped supporting CDF software for CDF versions 2.5, 2.6 and 2.7 (the
latter being from 2012) on 3 different hardware platforms due to ‘lack of [user]
interest’. While that makes sense for day to day use, it’s terrible for archiving
purposes when data must be accessible for decades to come on whatever platforms

people may have. Who's to say their software for the current CDF version 3.0 will
still be accessible in a decade, let alone 100 years from now?

My personal opinion of CDFs being unsuitable for the PDS however is based on the
current format, and may be fixable. A huge benefit of CDFs is the ability to store
multi-dimensional data, however there are draw backs for an archival stand-alone
product:

1) The description fields within the CDF usually have an 80 character limit,
which is just too short. For some of my descriptions fields in PDS 3 files I run
to many pages to give a clear description or to simply note the 8 different
values this object could take and what each means. For a new CDF version I
wish the description fields did not have any limit on size.

2) Without downloading and using the Goddard CDF codes these files are
difficult to treat as a simple binary file. I know for the MAVEN mission the
PDS folks have worked on a label file that could be used to decode the CDF,
but this seems far more complex that a regular flat-file PDS3 version binary.

3) AUTC time string must be an allowed EPOCH that other CDF variables can
reference from (or DEPEND on in CDF speak) without using TT2000. UTC
time strings are the PDS preferred method of time, for very good reasons, so
the CDF should natively support that.

4) CDF files are not stand alone files! They require the use of a leap second file
to convert between their (nano-)seconds since an epoch and a human yyyy-
mm-dd HH:MM:SS time (or yyyy-ddd) that most scientists work in. Currently
the Goddard CDF software downloads contain a leap second file stored on
your local machine - but a user has no immediate way to check if that is the
most current leap second file or not. As such, all data is not stand alone, and
requires use of a secondary file that has no easy way to keep updated. And if
[were to share a CDF file with a colleague, I've no way to know what leap
second file they have (perhaps from an earlier Goddard software release),
meaning we could see different ‘human’ times for the same data.

The latter two are the most critical aspects as to why I think the PDS should not use
CDF files in their current form. The CDF teams have recently made a way to include
reference leap second arrays within the same CDF per file, which is good, but unless
the Goddard CDF software (and any inbuilt CDF software in Matlab/IDL) always
uses the leap second array within the same CDF instead of any other local file there
will be room for confusion. I'd also like to see the Goddard CDF team join forces
with the NAIF SPICE teams to use their leap second kernel so that the NASA family
has just one leap second file of reference.

These are fixable problems for later versions of CDF formats if the will is there, but
for the foreseeable future I will not personally create CDF files as an acceptable PDS
format for low level (CODMAC 2) spacecraft data [work on, as that is the basis for all
higher level products so must be correct without any doubts whatsoever.

